Skip to content
You are not logged in |Login  
     
Limit search to available items
Resources
More Information
Bestseller
BestsellerE-book
Author Liu, Weidong, 1965-

Title BSIM4 and MOSFET modeling for IC simulation / Weidong Liu, Chenming Hu.

Publication Info. Singapore : World Scientific Pub. Co., 2011.

Item Status

Description 1 online resource (xix, 414 pages) : illustrations.
Physical Medium polychrome
Description text file
Series International series on advances in solid state electronics and technology
International series on advances in solid state electronics and technology.
Bibliography Includes bibliographical references and index.
Contents Forword; Dedication; Preface; Contents; Chapter 1 BSIM and IC Simulation; 1.1 Circuit Simulation and Compact Models; 1.2 BSIM -- The Beginning; 1.3 BSIM3 -- A Compact Model Based on New MOSFET Physics; 1.4 BSIM3v3 -- World's First MOSFET Standard Model; 1.5 BSIM4 -- Aimed for 130nm Down to 20nm Nodes; 1.6 BSIM SOI; 1.7 Impact of BSIM; 1.8 Looking Towards the Future -- The Multi-Gate MOSFET Model; 1.9 The Intent of This Book; References; Chapter 2 Fundamental MOSFET Physical Effects and Their Models for BSIM4; 2.1 Introduction and Chapter Objectives; 2.2 Gate and Channel Geometries and Materials.
2.2.1 Gate and Channel Lengths and Widths2.2.2 Model Card and Parameter Binning; 2.2.3 Gate Stack and Substrate Material Model Options; 2.3 Temperature-Dependence Model Options; 2.4 Threshold Voltage; 2.4.1 Long Channel with Uniform Substrate Doping; 2.4.2 Short-Channel Effect: Vth Roll-Off and Drain Bias Effects; 2.4.3 Narrow-Width Effects; 2.4.4 Non-Uniform Substrate Doping; 2.4.4.1 Non-Uniform Vertical Doping; 2.4.4.2 Non-Uniform Lateral Doping: Pocket Implants; 2.4.5 Vth Temperature Dependence; 2.4.6 BSIM4 Vth Equation; 2.5 Poly-Silicon Gate Depletion; 2.6 Bulk-Charge Effects.
2.7 LDD Resistances2.8 Finite Charge Thickness; 2.9 Effective Mobility; 2.10 Layout-Dependent Effects: Mechanical Stress and Proximity Effects; 2.11 Chapter Summary; 2.12 Parameter Table; References; Chapter 3 Channel DC Current and Output Resistance; 3.1 Introduction and Chapter Objectives; 3.2 Channel Current Theory; 3.3 Single Continuous Channel Charge Model; 3.4 Channel Current in Subthreshold and Linear Operations; 3.5 Velocity Saturation and Velocity Overshoot; 3.6 Output Resistance in Saturation Region; 3.6.1 CLM: Channel Length Modulation; 3.6.2 DIBL: Drain-Induced Barrier Lowering.
3.6.3 DITS: Drain-Induced Threshold Voltage Shift Due to Non-Uniform Doping3.6.4 SCBE: Substrate Current Induced Body-Bias Effect; 3.6.5 Channel Current Model for All Regions of Operation; 3.7 Source-End Velocity Limit; 3.8 Chapter Summary; 3.9 Parameter Table; References; Chapter 4 Gate Direct-Tunneling and Body Currents; 4.1 Introduction and Chapter Objectives; 4.2 Gate Direct-Tunneling Current Theory and Model; 4.2.1 Tunneling Mechanisms and Current Components; 4.2.2 Gate Oxide Voltage; 4.2.3 Gate-Body Tunneling Current Igb; 4.2.4 Gate-Source/Drain Tunneling Through Overlap Regions.
4.2.5 Gate-Channel Tunneling Current4.2.5.1 Igc0: The Vds = 0 Bias Scenario; 4.2.5.2 Igcs and Igcd Partitioning: The Non-Zero Vds Scenario; 4.2.6 Characterization and Parameter Extraction; 4.3 Body Currents; 4.3.1 Impact Ionization; 4.3.2 Gate-Induced Source and Drain Leakage; 4.4 Summary of BSIM4 Branch and Terminal DC Currents; 4.5 Chapter Summary; 4.6 Parameter Table; References; Chapter 5 Charge and Capacitance Models; 5.1 Introduction and Chapter Objectives; 5.2 MOSFET Capacitance Theory; 5.3 Intrinsic Charge and Capacitance Models; 5.3.1 Charge-Thickness Model (CTM).
Summary This book presents the art of advanced MOSFET modeling for integrated circuit simulation and design. It provides the essential mathematical and physical analyses of all the electrical, mechanical and thermal effects in MOS transistors relevant to the operation of integrated circuits. Particular emphasis is placed on how the BSIM model evolved into the first ever industry standard SPICE MOSFET model for circuit simulation and CMOS technology development. The discussion covers the theory and methodology of how a MOSFET model, or semiconductor device models in general, can be implemented to be ro.
Local Note eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - North America
Subject Metal oxide semiconductor field-effect transistors -- Computer simulation.
Metal oxide semiconductor field-effect transistors -- Computer simulation.
Metal oxide semiconductor field-effect transistors.
Electronic circuit design -- Data processing.
Electronic circuit design -- Data processing.
Genre/Form Electronic books.
Added Author Hu, Chenming.
Other Form: Print version: Liu, Weidong, 1965- BSIM4 and MOSFET modeling for IC simulation. Singapore ; London : World Scientific, 2011
ISBN 9789812813992 (electronic book)
9812813993 (electronic book)
9812568638
9789812568632