Skip to content
You are not logged in |Login  
Limit search to available items
More Information
Author Brauer, Hartmut, 1953- author.

Title Motion-induced eddy current techniques for non-destructive testing and evaluation / Hartmut Brauer [and five others].

Publication Info. Stevenage : Institution of Engineering and Technology, 2018.

Item Status

Description 1 online resource : illustrations.
Physical Medium polychrome
Description text file
Series IET Control, robotics and sensors series ; 06
IET control, robotics and sensors series ; 06.
Bibliography Includes bibliographical references and index.
Summary The book, consisting of 6 chapters, studies motion-induced eddy current techniques for non-destructive testing and evaluation by considering: forward simulation methods; sensors for MIECT; experiments and LET measurements; Lorentz force evaluation and non-destructive applications.
Contents Intro; Contents; Author Biographies; Preface; 1: Introduction (Hartmut Brauer); 1.1 Electromagnetic testing; 1.1.1 Brief historical review; 1.1.2 Electromagnetic NDT methods; 1.1.3 Capabilities of electromagnetic techniques; 1.1.4 Present state of eddy current inspection; 1.2 Eddy current testing; 1.2.1 Eddy current and ECT; 1.2.2 ECT principles; 1.2.3 Applications; 1.3 Motion-induced ECT; 1.3.1 Introduction; 1.3.2 Lorentz force eddy current testing; 1.3.3 Theory; 1.3.4 Experiments; 1.3.5 Comparison of ECT and LET
2: Forward simulation methods (Marek Ziolkowski, Mladen Zec and Konstantin Weise)2.1 Moving coordinate systems-transformations; 2.2 Semianalytical methods used in LET systems; 2.2.1 Calculation of forces in 2D LET systems; 2.2.2 Lorentz forces acting on 3D permanent magnets above moving conducting plate without defects; 2.2.3 Calculation of forces in 3D LET systems; 2.2.4 Oscillatory motion of permanent magnets above a conducting plate; 2.2.5 The simplest approach to calculate DRS; 2.2.6 A hole in a thin, large, conductive sheet; 2.2.7 An extended area approach in the calculation of DRS
2.3 Surface charge simulation method2.4 Numerical simulations with FEM; 2.4.1 Introduction and motivation; 2.4.2 Computation of eddy current distributions including moving parts; 2.4.3 Numerical modeling of conductivity anomalies; 2.4.4 Comparison of numerical approaches; 3: Sensors for MIECT (Matthias Carlstedt, Hartmut Brauer and Konstantin Weise); 3.1 Force measurement systems; 3.1.1 Principles of force transducers; 3.1.2 Differential Lorentz force eddy current testing sensor; 3.1.3 Characteristics and calibration of force measurement systems; 3.2 Optimization of PM systems
3.2.1 Introduction and motivation3.2.2 Methods; 3.2.3 Optimization results and discussion; 3.2.4 Prototypes of optimized LET magnet systems; 3.2.5 Defect depth study; 3.2.6 Conclusions; 4: Experiments and LET measurements (Matthias Carlstedt and Konstantin Weise); 4.1 Measurement procedure; 4.1.1 Measurement principle; 4.1.2 Measurement method; 4.1.3 Experimental setup; 4.2 Validation procedure; 4.2.1 DSP and basic statistics; 4.2.2 Autocorrelation on typical force signals; 4.2.3 Program flowchart for DSP; 4.2.4 Experimental study; 4.2.5 Uncertainty analysis
5: Lorentz force evaluation (Hartmut Brauer)5.1 Identification of conductivity anomalies; 5.2 Inverse solution techniques; 5.2.1 Theory; 5.2.2 Classification of inverse problems; 5.2.3 Regularization; 5.3 Lorentz force evaluation; 5.4 Summary; 6: Applications (Robert P. Uhlig, Hartmut Brauer, Konstantin Weise and Marek Ziolkowski); 6.1 Sigmometry; 6.1.1 Introduction and motivation; 6.1.2 Basic principle; 6.1.3 Semianalytical and numerical calibration; 6.1.4 Experimental validation; 6.1.5 Findings; 6.2 Defectocscopy of multilayered structures; 6.2.1 LET measurements of alucobond specimen
Local Note eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - North America
Subject Nondestructive testing.
Nondestructive testing.
Eddy currents (Electric)
Eddy currents (Electric)
Genre/Form Electronic books.
Other Form: Print version: Brauer, Hartmut. Motion-induced eddy current techniques for non-destructive testing and evaluation. Stevenage : Institution of Engineering and Technology, 2018 9781785612152 (OCoLC)1063707839
ISBN 9781785612169 (electronic book)
1785612166 (electronic book)
9781523121106 (electronic book)
1523121106 (electronic book)
9781785612152 (hardback)
1785612158 (hardback)