LEADER 00000cam a2200781Ka 4500 001 ocn836848758 003 OCoLC 005 20190405013910.6 006 m o d 007 cr cnu---unuuu 008 130408s2008 enka ob 001 0 eng d 019 704518046|a776967037|a843203457 020 9781107363069|q(electronic bk.) 020 1107363063|q(electronic bk.) 020 9780511894046|q(e-book) 020 051189404X|q(e-book) 020 9780511721281|q(ebook) 020 0511721285|q(ebook) 020 9781107367975 020 1107367972 020 |z9780521728669 020 |z0521728665 035 (OCoLC)836848758|z(OCoLC)704518046|z(OCoLC)776967037 |z(OCoLC)843203457 040 N$T|beng|epn|cN$T|dE7B|dIDEBK|dOCLCF|dYDXCP|dAUD|dUUS |dMERUC|dMHW|dDEBSZ|dOCLCQ|dAU@ 049 RIDW 050 4 QA567.2.E44|bD36 2008eb 072 7 MAT|x012010|2bisacsh 082 04 516.3/52|222 084 MAT 143f|2stub 084 MAT 145f|2stub 084 SK 180|2rvk 084 SK 200|2rvk 084 SI 320|2rvk 090 QA567.2.E44|bD36 2008eb 100 1 Delbourgo, Daniel. 245 10 Elliptic curves and big Galois representations /|cDaniel Delbourgo. 260 Cambridge, UK ;|aNew York :|bCambridge University Press, |c2008. 300 1 online resource (ix, 281 pages) :|billustrations. 336 text|btxt|2rdacontent 337 computer|bc|2rdamedia 338 online resource|bcr|2rdacarrier 490 1 London Mathematical Society lecture note series ;|v356 504 Includes bibliographical references (pages 275-279) and index. 505 0 Cover; Title; Copyright; Dedication; Contents; Introduction; List of Notations; Chapter I Background; 1.1 Elliptic curves; 1.2 Hasse-Weil L-functions; 1.3 Structure of the Mordell-Weil group; 1.4 The conjectures of Birch and Swinnerton-Dyer; 1.5 Modular forms and Hecke algebras; Chapter II p-Adic L-functions and Zeta Elements; 2.1 The p -adic Birch and Swinnerton-Dyer conjecture; 2.2 Perrin- Riou's local Iwasawa theory; 2.3 Integrality and (<U+007a>, <U+0044>)-modules; 2.4 Norm relations in K-theory; 2.5 Kato's p-adic zeta-elements; Chapter III Cyclotomic Deformations of Modular Symbols; 3.1 Q-continuity. 505 8 3.2 Cohomological subspaces of Euler systems3.3 The one- variable interpolation; 3.4 Local freeness of the image; Chapter IV A User's Guide to Hida Theory; 4.1 The universal ordinary Galois representation; 4.2 <U+004e>- adic modular forms; 4.3 Multiplicity one for I-adic modular symbols; 4.4 Two-variable p-adic L-functions; Chapter V Crystalline Weight Deformations; 5.1 Cohomologies over deformation rings; 5.2 p-Ordinary deformations of Bcris and Dcris; 5.3 Constructing big dual exponentials; 5.4 Local dualities; Chapter VI Super Zeta- Elements; 6.1 The R-adic version of Kato's theorem. 505 8 6.2 A two-variable interpolation6.3 Applications to Iwasawa theory; 6.4 The Coleman exact sequence; 6.5 Computing the R[[<U+0044>]]-torsion; Chapter VII Vertical and Half-Twisted Arithmetic; 7.1 Big Selmer groups; 7.2 The fundamental commutative diagrams; 7.3 Control theory for Selmer coranks; Chapter VIII Diamond-Euler Characteristics: the Local Case; 8.1 Analytic rank zero; 8.2 The Tamagawa factors away from p; 8.3 The Tamagawa factors above p (the vertical case); 8.4 The Tamagawa factors above p (the half-twisted case); 8.5 Evaluating the covolumes. 505 8 10.6 Numerical examples, open problemsAppendices; A: The Primitivity of Zeta Elements; B: Specialising the Universal Path Vector; C: The Weight-Variable Control Theorem (by Paul A. Smith); C.1 Notation and assumptions; C.2 Properties of affinoids; C.3 The cohomology of a lattice L; C.4 Local conditions; C.5 Dualities via the Ext -pairings; C.6 Controlling the Selmer groups; Bibliography; Index. 520 1 "The mysterious properties of modular forms lie at the heart of modern number theory. This book develops a generalisation of the method of Euler systems to a two- variable deformation ring. The resulting theory is then used to study the arithmetic of elliptic curves, in particular the Birch and Swinnerton-Dyer (BSD) formula." "Three main steps are outlined. The first is to parametrise 'big' cohomology groups using (deformations of) modular symbols. One can then establish finiteness results for big Selmer groups. Finally, at weight two, the arithmetic invariants of these Selmer groups allow the control of data from the BSD conjecture." "This is the first book on the subject, and the material is introduced from scratch; both graduate students and professional number theorists will find this an ideal introduction to the subject. Material at the very forefront of current research is included, and numerical examples encourage the reader to interpret abstract theorems in concrete cases."- -Jacket. 588 0 Print version record. 590 eBooks on EBSCOhost|bEBSCO eBook Subscription Academic Collection - North America 650 0 Curves, Elliptic. 650 0 Galois theory. 655 4 Electronic books. 776 08 |iPrint version:|aDelbourgo, Daniel.|tElliptic curves and big Galois representations.|dCambridge, UK ; New York : Cambridge University Press, 2008|z9780521728669|w(DLC) 2008021192|w(OCoLC)227275650 830 0 London Mathematical Society lecture note series ;|v356. 856 40 |uhttps://rider.idm.oclc.org/login?url=http:// search.ebscohost.com/login.aspx?direct=true&scope=site& db=nlebk&AN=552371|zOnline eBook via EBSCO. Access restricted to current Rider University students, faculty, and staff. 856 42 |3Instructions for reading/downloading the EBSCO version of this eBook|uhttp://guides.rider.edu/ebooks/ebsco 948 |d20190507|cEBSCO|tEBSCOebooksacademic NEW 4-5-19 7552 |lridw 994 92|bRID