Skip to content
You are not logged in |Login  
     
Limit search to available items
Record:   Prev Next
Resources
More Information
Bestseller
BestsellerE-book

Title Fragmentation processes : topics in atomic and molecular physics / edited by Colm T. Whelan, Old Dominion University.

Publication Info. Cambridge : Cambridge University Press, 2012.

Item Status

Description 1 online resource
Physical Medium polychrome
Description text file
Summary "Revolutionary advances in experimental techniques and spectacular increases in computer power over recent years have enabled researchers to develop a much more profound understanding of the atomic few-body problem. One area of intense focus has been the study of fragmentation processes. Covering the latest research in the field, this edited text is the first to provide a focussed and systematic treatment of fragmentation processes, bringing together contributions from a range of leading experts. As well as tackling the more established electron-impact ionization processes, (e,2e), this book also guides the reader through topics such as molecular fragmentation, ion-atom collisions and multi-photon processes. Combining a broad range of topics with an equal mix of theoretical and experimental discussion, this is an invaluable text for graduate students and researchers in atomic collisions, laser physics and chemistry"-- Provided by publisher.
Bibliography Includes bibliographical references and index.
Contents Intro -- Contents -- Contributors -- Preface -- 1 Direct and resonant double photoionization: from atoms to solids -- 1.1 Introduction -- 1.2 Direct double photoionization -- 1.2.1 The He atom -- 1.2.2 The H2 molecule and the four-body problem -- 1.2.3 Direct DPI in solids and surfaces -- 1.3 Indirect double photoionization -- 1.3.1 Auger photoelectron coincidence spectroscopy (APECS) applied to molecules -- 1.3.2 Auger photoelectron coincidence spectroscopy(APECS) applied to solids -- 1.3.3 Interference and coherence effects in indirect double photoionization -- 1.4 Conclusions -- References -- 2 The application of propagating exterior complex scaling to atomic collisions -- 2.1 Introduction -- 2.2 Introduction to exterior complex scaling -- 2.2.1 A one-dimensional example -- 2.2.2 Numerical method: propagating exterior complex scaling -- 2.3 Application of ECS to electron-hydrogen scattering -- 2.3.1 Extracting scattering amplitudes from surface integrals -- 2.3.2 Propagating exterior complex scaling considerations -- 2.4 Scattering in electron-hydrogen system -- 2.5 Exterior complex scaling for electron-helium scattering -- 2.5.1 Extracting scattering amplitudes -- 2.5.2 S-wave model for electron-helium scattering -- 2.6 Summary and outlook for the future -- References -- 3 Fragmentation of molecular-ion beams in intense ultrashort laser pulses -- 3.1 Introduction -- 3.2 Experimental method -- 3.2.1 Laser -- 3.2.2 Ion beam -- 3.2.3 Crossing the laser and ion beams -- 3.2.4 Coincidence beam-fragment measurements -- 3.2.5 Coincidence 3D momentum imaging of beam fragments -- 3.3 Benchmark molecules -- 3.3.1 One electron diatomic molecule -- H2+ -- 3.3.2 Simplest polyatomic molecule -- H3+ -- 3.4 Complex and/or unique molecular ions -- 3.4.1 Vibrationally cold molecular ions -- CO2+ -- 3.4.2 Vibrationally semi-cold molecular ions -- NO2+.
3.4.3 Other complex molecular ions -- 3.5 Summary and outlook -- References -- 4 Atoms with one and two active electrons in strong laser fields -- 4.1 Introduction -- 4.2 Theoretical model -- 4.3 Two-photon double ionization of helium -- 4.4 DC-assisted double photoionization of He and H- -- 4.5 Strong-field ionization of lithium and hydrogen -- 4.6 High harmonics generation -- 4.7 Time delay in atomic photoionization -- References -- 5 Experimental aspects of ionization studies by positron and positronium impact -- 5.1 Introduction -- 5.2 Integral cross sections for positron impact ionization -- 5.3 Differential cross sections for positron impact ionization -- 5.4 Positronium-induced fragmentation -- 5.5 Conclusions and outlook -- References -- 6 (e,2e) spectroscopy spectroscopy using fragmentation processes -- 6.1 Introduction -- 6.2 Background -- 6.3 Theory -- 6.4 Electron momentum spectroscopy results -- 6.5 Low-energy (e,2e) results -- 6.6 Conclusion -- References -- 7 A coupled pseudostate approach to the calculation of ion-atom fragmentation processes -- 7.1 Introduction -- 7.2 Theory -- 7.2.1 The impact parameter method and extraction of the differential motion of the projectile -- 7.2.2 Extracting the differential motion of the ejected electron -- 7.3 Antiproton-induced ionization -- References -- 8 Electron impact ionization using (e,2e) coincidence techniques from threshold to intermediate energies -- 8.1 Introduction -- 8.1.1 Description of the experimental coincidence technique -- 8.1.2 (e,2e) experiments near threshold -- 8.1.3 (e,2e) experiments from threshold to intermediate energies -- 8.1.4 Summary -- 8.2 Experimental methods and techniques -- 8.2.1 Materials -- 8.2.2 Design of the electron gun and analyzers -- 8.2.3 Example: the (e,2e) spectrometer in Manchester -- 8.2.4 Multi-detection -- the COLTRIMS reaction microscope.
8.3 Theoretical models -- 8.3.1 Near threshold -- 8.3.2 The intermediate energy regime -- 8.4 Atomic targets -- 8.4.1 Near-threshold measurements on helium -- 8.4.2 Measurements on helium at intermediate energies -- 8.4.3 Measurements on the noble gases in the perpendicular plane -- 8.5 Molecular targets -- 8.5.1 Measurements from H2 -- 8.5.2 Measurements from polyatomic molecules -- 8.6 Experiments from laser-aligned atoms -- 8.6.1 The laser excitation process -- 8.6.2 Ionization from laser-excited magnesium -- 8.7 Future work and conclusions -- References -- 9 (e,2e) processes on atomic inner shells -- 9.1 (e,2e) processes -- an overview -- 9.2 Non-relativistic theory -- 9.3 The distorted wave Born approximation -- 9.3.1 Geometries -- 9.3.2 The ionization of the 2p state of argon -- 9.4 Inner-shell ionization of heavy metal targets at relativisticimpact energies -- 9.4.1 Relativistic, distorted wave Born approximation -- 9.5 General features of the cross section -- 9.5.1 Coplanar asymmetric-Ehrhardt-geometry -- 9.5.2 Coplanar symmetric-Pochat-geometry -- 9.6 Special features -- 9.6.1 Spin-dependent effects using unpolarized beams on unpolarized targets -- 9.6.2 Distortion effects -- References -- 10 Spin-resolved atomic (e,2e) processes -- 10.1 Introduction -- 10.2 Experimental considerations -- 10.2.1 Definition of measured and derived parameters -- 10.2.2 Generation of spin-polarized electron beams -- 10.3 Low-Z targets and low electron impact energies -- 10.4 High-Z targets and low electron impact energies -- 10.5 High-Z targets and high electron impact energies -- 10.6 Longitudinally polarized electrons -- 10.7 Conclusion -- References -- Index.
Local Note eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - North America
Language Text in English.
Subject Few-body problem.
Few-body problem.
Ion-atom collisions.
Ion-atom collisions.
Nuclear fragmentation.
Nuclear fragmentation.
Genre/Form Electronic books.
Electronic books.
Added Author Whelan, Colm T., editor.
Other Form: Print version: Fragmentation processes. Cambridge : Cambridge University Press, 2012 9781107007444 (DLC) 2012035049 (OCoLC)795763384
ISBN 9781139624978 (electronic book)
1139624970 (electronic book)
9781139017572 (electronic book)
1139017578 (electronic book)
9781139615679
113961567X
9781107007444
1107007445
9781283870436
1283870436
9781139611954
113961195X
Standard No. ebc1099841