Skip to content
You are not logged in |Login  
     
Limit search to available items
Record:   Prev Next
Resources
More Information
Bestseller
BestsellerE-book

Title Structural analysis using computational chemistry / Norma-Aurea Rangel-Vázquez.

Publication Info. Gistrup, Denmark : River Publishers, [2016]
©2016

Item Status

Description 1 online resource.
text file
Series River Publishers series in polymer science
River Publishers series in polymer science.
Bibliography Includes bibliographical references at the end of each chapters and index.
Contents Front Cover -- Half Title -- RIVER PUBLISHERS SERIES IN POLYMER SCIENCE -- Title Page -- Structural Analysis using Computational Chemistry -- Copyright Page -- Contents -- Prologue -- Acknowledgments -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Chapter 1 -- Quantum Mechanics and Structural Molecular Study (AM1) -- 1.1 Theoretical Basis of Quantum Mechanics -- 1.1.1 Semiempirical Methods -- 1.1.1.1 The semiempirical method AM1 -- 1.1.1.1.1 Application of AM1 method in molecular structural study -- 1.1.1.1.2 Certain molecular properties -- 1.1.2 Computational Suite (HyperChem) -- 1.1.2.1 The molecules analyzed -- 1.1.2.2 Molecular modeling -- 1.2 Calculation of Molecular Properties -- 1.2.1 Molecular Energy -- 1.2.2 Obtaining the QSAR Properties -- 1.2.3 FTIR Analysis -- 1.2.4 Electrostatic Potential Map -- 1.2.5 Determination of Glibenclamide/Water Solubility -- 1.2.6 Degree of Cross-Linking in the Polymer Matrix -- 1.2.7 Covalent Cross-Linking -- 1.2.8 Polymer Matrix/Glibenclamide -- 1.3 Results -- 1.3.1 Structural Analysis of Glibenclamide (G) -- 1.3.1.1 QSAR properties and energy -- 1.3.1.2 FTIR -- 1.3.1.3 Electrostatic potential map -- 1.3.2 Structural Analysis of theWater Molecule and G/A -- 1.3.2.1 QSAR properties and energy -- 1.3.2.2 FTIR -- 1.3.2.3 Electrostatic potential map -- 1.3.3 Structural Analysis of Chitosan -- 1.3.3.1 QSAR properties and energy -- 1.3.3.2 FTIR -- 1.3.3.3 Electrostatic potential map -- 1.3.4 Structural Analysis of Genipin -- 1.3.4.1 QSAR properties and energy -- 1.3.4.2 FTIR -- 1.3.4.3 Electrostatic potential map -- 1.3.5 Cross-Linking: Chitosan/Genipin (C/Ge) -- 1.3.5.1 QSAR properties and energy -- 1.3.5.2 Electrostatic potential map -- 1.3.6 Adsorption of Glibenclamide in Chitosan/Genipin -- 1.3.6.1 QSAR properties and energy -- 1.3.6.2 FTIR.
1.3.6.3 Electrostatic potential map -- 1.4 Conclusions -- Acknowledgments -- References -- Chapter 2 -- Application of Quantum Models in Molecular Analysis -- 2.1 Introduction -- 2.1.1 Election of the Quantum Model -- 2.1.1.1 Choice of model in basic molecular properties -- 2.1.1.2 Election model according to their origin -- 2.1.1.3 Choice of a semiempirical model -- 2.2 Application of Quantum Models in the Structural Analysis of a Polymer Matrix for Drug Release -- 2.2.1 Structural Analysis of Metformin -- 2.2.2 Structural Analysis of Glibenclamide -- 2.2.3 Structural Analysis of the Elements of the Polymer Matrix -- 2.2.3.1 Chitosan -- 2.2.3.2 Genipin -- 2.2.3.3 Water -- 2.2.3.4 IR (Infrared) -- 2.3 System Analysis: Polymer Matrix/Drug -- 2.3.1 Analysis of Physicochemical and Energy Properties -- 2.3.2 Electrostatic Potential Map -- 2.3.3 IR (Infrared) -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3 -- Molecular Analysis of Insulin Through Controlled Adsorption in Hydrogels Based on Chitosan -- 3.1 Introduction -- 3.1.1 Polymers -- 3.1.1.1 Chitosan -- 3.1.2 Hydrogels -- 3.1.2.1 Cross-linking agents -- 3.1.2.2 Genipin -- 3.1.3 Adsorption of Drugs -- 3.1.3.1 Dermal adsorption -- 3.1.4 Diabetes -- 3.1.4.1 Insulin -- 3.1.5 Computational Chemistry -- 3.2 Methodology -- 3.2.1 Determination of Structures Individually -- 3.2.2 Calculation of Energy -- 3.2.3 Obtaining the Partition Coefficient (Log P) -- 3.2.4 Obtaining the Electrostatic Potential Map -- 3.2.5 Analysis of the Infrared Spectrum (FTIR) -- 3.3 Results -- 3.3.1 Structural Analysis of Chitosan -- 3.3.1.1 Energy optimization and partition coefficient (Log P) -- 3.3.1.2 Electrostatic potential map -- 3.3.1.3 FTIR -- 3.3.2 Structural Analysis of Genipin -- 3.3.2.1 Energy optimization and partition coefficient (Log P) -- 3.3.2.2 Electrostatic potential map -- 3.3.2.3 FTIR.
3.3.3 Structural Analysis of Chitosan Cross-Linked with Genipin (C/G) -- 3.3.3.1 Energy optimization and partition coefficient (Log P) -- 3.3.3.2 Electrostatic potential map -- 3.3.3.3 FTIR -- 3.3.4 Structural Analysis of Insulin -- 3.3.4.1 Energy optimization and partition coefficient (Log P) -- 3.3.4.2 Electrostatic potential map -- 3.3.4.3 FTIR -- 3.3.5 Determination of the Structural Properties of the Binding of Insulin and Chitosan Cross-Linked with Genipin (C/G-insulin) -- 3.3.5.1 Energy optimization and partition coefficient (Log P) -- 3.3.5.2 Electrostatic potential map -- 3.3.5.3 FTIR -- 3.4 Conclusions -- Acknowledgments -- References -- Chapter 4 -- Analysis and Molecular Characterization of Organic Materials for Applicationi n Solar Cells -- 4.1 Introduction -- 4.1.1 Computational Chemistry -- 4.1.1.1 Molecular mechanics (MM) -- 4.1.1.1.1 AMBER model -- 4.1.1.2 Quantum mechanics -- 4.1.1.3 Semiempirical methods -- 4.1.1.3.1 Parametric method 3 -- 4.1.2 Composites -- 4.1.2.1 Polymer matrix -- 4.1.3 Polymers -- 4.1.3.1 High-density polyethylene -- 4.1.3.2 PCPDTBT -- 4.1.4 Graphite -- 4.1.4.1 Fullerene -- 4.1.5 HyperChem -- 4.1.5.1 Calculation properties -- 4.2 Methodology -- 4.2.1 Determination of Individual Structures -- 4.2.2 Calculation of Energy -- 4.2.3 Getting QSAR Properties -- 4.2.4 Obtaining Electrostatic Potential Map -- 4.2.5 Infrared Spectral Analysis (FTIR) -- 4.2.6 Obtaining Structural Parameters -- 4.3 Results -- 4.3.1 Structural Analysis of PCPDTBT−Fullerene−Polyethylene -- 4.3.1.1 Energy optimization -- 4.3.1.2 Electrostatic potential map -- 4.3.1.3 Bond length -- 4.3.1.4 Spectrum Fourier Transform Infrared (FTIR) -- 4.4 Conclusions -- Acknowledgments -- References -- Chapter 5 -- Determination of Thermodynamic Properties of Ionic Liquids Through Molecular Simulation -- 5.1 Introduction -- 5.1.1 Overview of Simulation.
5.1.2 Implementation of the Simulation Method -- 5.1.3 Collective Simulation -- 5.1.4 Interatomic Potential -- 5.1.4.1 Forces of attraction-repulsion -- 5.1.4.2 Electrostatic forces -- 5.1.5 Initial Conditions and Boundary Conditions -- 5.1.6 Radio of Cutting and Condition of Minimum Image -- 5.1.7 Monte Carlo Simulation Technique -- 5.1.7.1 Technical Monte Carlo in isothermal-isobaric group (NPT) -- 5.1.7.2 Insertion of test particle technique and Henry constant -- 5.1.8 Molecular System Description -- 5.1.8.1 All atoms (AA) -- 5.1.8.2 United atoms (UA) -- 5.1.9 Standard Monte Carlo Moves Involving a Single Box -- 5.1.9.1 Translation move -- 5.1.9.2 Rotation move -- 5.1.9.3 Volume changes -- 5.1.9.4 Flip moves -- 5.1.9.5 Reputation move -- 5.1.9.6 Pivot move -- 5.2 Methodology -- 5.2.1 Construction of the Cation and Anion -- 5.2.2 Construction of the Simulation Box -- 5.2.3 System Simulation Parameters -- 5.2.4 Calculation of Thermodynamic Properties -- 5.2.4.1 Thermal expansion coefficient (?P) -- 5.2.4.2 Isothermal compressibility coefficient (kT) -- 5.2.4.3 Isochoric and isobaric heat capacity (Cv and Cp) -- 5.2.4.4 Joule−Thomson coefficient (?JT) -- 5.2.4.5 Speed of sound (u) -- 5.2.4.6 Chemical potential of the solute (?ex2 ) -- 5.2.4.7 Henry constant (h) -- 5.2.5 Calculation of Structural Properties -- 5.3 Results and Discussions -- 5.3.1 Molecule Construction -- 5.3.2 Simulation Box -- 5.3.3 Data Entry System -- 5.3.4 Equilibration Phase of System -- 5.3.5 Production Phase of System -- 5.3.6 Radial Distribution Functions of Ionic Liquid -- 5.4 Conclusions -- Acknowledgments -- References -- Index -- About the Editor -- Back Cover.
Summary Computational chemistry is a science that allows researchers to study, characterize and predict the structure and stability of chemical systems. In other words: studying energy differences between different states to explain spectroscopic properties and reaction mechanisms at the atomic level. This field is gaining in relevance and strength due to field applications from chemical engineering, electrical engineering, electronics, biomedicine, biology, materials science, to name but a few. Structural Analysis using Computational Chemistry arises from the need to present the progress of computational chemistry in various application areas. Technical topics discussed in the book include: * Quantum mechanics and structural molecular study (AM1) * Application of quantum models in molecular analysis * Molecular analysis of insulin through controlled adsorption in hydrogels based on chitosan * Analysis and molecular characterization of organic materials for application in solar cells * Determination of thermodynamic properties of ionic liquids through molecular simulation.
Local Note eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - North America
Subject Analytical chemistry.
Analytical chemistry.
Molecular structure -- Mathematical models.
Molecular structure -- Mathematical models.
Molecular structure.
Quantum chemistry.
Quantum chemistry.
Polymers -- Analysis -- Mathematical models.
Polymers -- Analysis.
Mathematical models.
Genre/Form Electronic books.
Added Author Rangel-Vazquez, Norma-Aurea, editor.
Other Form: Print version: Structural analysis using computational chemistry. Gistrup, Denmark : River Publishers, [2016] 8793379951 9788793379954 (DLC) 2016522483 (OCoLC)953598978
ISBN 9788793379961 (electronic book)
879337996X (electronic book)
8793379951
9788793379954