Skip to content
You are not logged in |Login  
     
Limit search to available items
Record:   Prev Next
Resources
More Information
Bestseller
BestsellerE-book
Author Serfaty, Sylvia.

Title Coulomb gases and Ginzburg-Landau vortices / Sylvia Serfaty.

Publication Info. Zürich, Switzerland : European Mathematical Society, [2015]

Item Status

Description 1 online resource (viii, 156 pages) : illustrations.
Physical Medium monochrome
Description text file
Series Zurich lectures in advanced mathematics
Zurich lectures in advanced mathematics.
Bibliography Includes bibliographical references and index.
Contents The leading order behavior of the Coulomb gas -- Splitting the Hamiltonian -- Definition(s) and properties of renormalized energy -- Deriving w as the large n limit -- Deriving w as the large n limit: screening, upper bound, and consequences -- The Ginzburg-Landau functional: presentation and heuristics -- Main mathematical tools for Ginzburg-Landau -- The leading order behavior for Ginzburg-Landau -- The splitting and the next order behavior for Ginzburg-Landau.
Summary The topic of this book is systems of points in Coulomb interaction, in particular, the classical Coulomb gas, and vortices in the Ginzburg-Landau model of superconductivity. The classical Coulomb and Log gases are classical statistical mechanics models, which have seen important developments in the mathematical literature due to their connection with random matrices and approximation theory. At low temperature, these systems are expected to "cristallize" to so-called Fekete sets, which exhibit microscopically a lattice structure. The Ginzburg-Landau model, on the other hand, describes superconductors. In superconducting materials subjected to an external magnetic field, densely packed point vortices emerge, forming perfect triangular lattice patterns, so-called Abrikosov lattices. This book describes these two systems and explores the similarity between them. It presents the mathematical tools developed to analyze the interaction between the Coulomb particles or the vortices, at the microscopic scale, and describes a "renormalized energy" governing the point patterns. This is believed to measure the disorder of a point configuration, and to be minimized by the Abrikosov lattice in dimension 2. The book gives a self-contained presentation of results on the mean field limit of the Coulomb gas system, with or without temperature, and of the derivation of the renormalized energy. It also provides a streamlined presentation of the similar analysis that can be performed for the Ginzburg-Landau model, including a review of the vortex-specific tools and the derivation of the critical fields, the mean-field limit and the renormalized energy.
Local Note eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - North America
Subject Statistical mechanics.
Statistical mechanics.
Continuum mechanics.
Continuum mechanics.
Phase transformations (Statistical physics)
Phase transformations (Statistical physics)
Superconductivity -- Mathematics.
Superconductivity.
Mathematics.
Crystallization -- Mathematics.
Crystallization.
Renormalization (Physics) -- Mathematics.
Renormalization (Physics)
Genre/Form Electronic books.
Electronic books.
Other Form: Print version: Serfaty, Sylvia. Coulomb gases and Ginzburg-Landau vortices. Zürich, Switzerland : European Mathematical Society, [2015] 9783037191521 (OCoLC)908417733
ISBN 9783037196526 electronic book
3037196521 electronic book
9783037191521
303719152X