Skip to content
You are not logged in |Login  
     
Limit search to available items
Record:   Prev Next
Resources
More Information
Bestseller
BestsellerE-book
Author DeGrand, T. (Thomas)

Title Lattice methods for quantum chromodynamics / Thomas DeGrand, Carleton DeTar.

Publication Info. Hackensack, NJ : World Scientific, [2006]
©2006

Item Status

Description 1 online resource (xv, 345 pages) : illustrations
Physical Medium polychrome
Description text file
Bibliography Includes bibliographical references (pages 329-340) and index.
Contents Preface -- 1. Introduction -- 2. Continuum QCD and its phenomenology. 2.1. The Lagrangian and QCD at short distance. 2.2. The nonrelativistic quark model. 2.3. Heavy quark systems. 2.4. Chiral symmetry and chiral symmetry breaking. 2.5. A technical aside: Ward identities. 2.6. The axial anomaly and instantons. 2.7. The large N[symbol] limit -- 3. Path integration. 3.1. Lattice Schwinger model. 3.2. Hamiltonian with gauge fields. 3.3. Feynman path integral. 3.4. Free fermions. 3.5. The interacting theory -- 4. Renormalization and the renormalization group. 4.1. Blocking transformations. 4.2. Renormalization group equations. 4.3. Renormalization group equations for the scalar field. 4.4. Effective field theories -- 5. Yang-Mills theory on the lattice. 5.1. Gauge invariance on the lattice. 5.2. Yang-Mills actions. 5.3. Gauge fixing. 5.4. Strong coupling -- 6. Fermions on the lattice. 6.1. Naive fermions. 6.2. Wilson-type fermions. 6.3. Staggered fermions. 6.4. Lattice fermions with exact chiral symmetry. 6.5. Exact chiral symmetry from five dimensions. 6.6. Heavy quarks -- 7. Numerical methods for bosons. 7.1. Importance sampling. 7.2. Special methods for the Yang-Mills action -- 8. Numerical methods for fermions. 8.1. Taming the fermion determinant: the [symbol] algorithm. 8.2. Taming the fermion determinant: the R algorithm. 8.3. The fourth root approximation. 8.4. An exact algorithm for the fourth root: rational hybrid Monte Carlo. 8.5. Refinements. 8.6. Special considerations for overlap fermions. 8.7. Monte Carlo methods for fermions. 8.8. Conjugate gradient and its relatives -- 9. Data analysis for lattice simulations. 9.1. Correlations in simulation time. 9.2. Correlations among observables. 9.3. Fitting strategies -- 10. Designing lattice actions. 10.1. Motivation. 10.2. Symanzik improvement. 10.3. Tadpole improvement. 10.4. Renormalization-group inspired improvement. 10.5. "Fat link" actions -- 11. Spectroscopy. 11.1. Computing propagators and correlation functions. 11.2. Sewing propagators together. 11.3. Glueballs. 11.4. The string tension -- 12. Lattice perturbation theory. 12.1. Motivation. 12.2. Technology. 12.3. The scale of the coupling constant -- 13. Operators with anomalous dimension. 13.1. Perturbative techniques for operator matching. 13.2. Nonperturbative techniques for operator matching -- 14. Chiral symmetry and lattice simulations. 14.1. Minimal introduction to chiral perturbation theory. 14.2. Quenching, partial quenching, and unquenching. 14.3. Chiral perturbation theory for staggered fermions. 14.4. Computing topological charge -- 15. Finite volume effects. 15.1. Finite volume effects in chiral perturbation theory. 15.2. The [symbol]-regime. 15.3. Finite volume, more generally. 15.4. Miscellaneous comments -- 16. Testing the standard model with lattice calculations. 16.1. Overview. 16.2. Strong renormalization of weak operators. 16.3. Lattice discrete symmetries. 16.4. Some simple examples. 16.5. Evading a no-go theorem -- 17. QCD at high temperature and density. 17.1. Simulating high temperature. 17.2. Introducing a chemical potential. 17.3. High quark mass limit and chiral limit. 17.4. Locating and characterizing the phase transition. 17.5. Simulating in a nearby ensemble. 17.6. Dimensional reduction and nonperturbative behavior. 17.7. Miscellaneous observables. 17.8. Nonzero density. 17.9. Spectral functions and maximum entropy.
Summary At a time of robust worldwide debates on globalization, this compact volume shows: how successful each of the East Asian economies have been in harnessing globalization by appropriate and alternative means to catch up with the advanced economies; and what implications can be drawn to assess Chinese economic growth in context. The essays in this book include supporting notes to review effectively the highlights of the development of East Asia, over the six decades after World War II: why the region has performed so well economically relative to the rest of the developing world; which are the most challenging limitations to be addressed; and several sensational controversies in the development economics literature to be sensibly resolved.
Local Note eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - North America
Subject Lattice gauge theories -- Mathematical models.
Lattice gauge theories.
Mathematical models.
Quantum chromodynamics -- Mathematical models.
Quantum chromodynamics.
Genre/Form Electronic books.
Added Author DeTar, Carleton.
Other Form: Print version: DeGrand, T. (Thomas). Lattice methods for quantum chromodynamics. Hackensack, NJ : World Scientific, ©2006 (DLC) 2007271753
ISBN 9789812773982 (electronic book)
9812773983 (electronic book)
1281919225
9781281919229
9789812567277
9812567275