Skip to content
You are not logged in |Login  
     
Limit search to available items
Record 11 of 14
Record:   Prev Next
Resources
More Information
Bestseller
BestsellerE-book
Author Aluf, Ofer.

Title Optoisolation circuits : nonlinearity applications in engineering : optoisolation nonlinear dynamic and chaos : application in engineering / Ofer Aluf.

Publication Info. Singapore ; Hackensack, NJ : World Scientific Publishing Co., [2012]
©2012

Item Status

Description 1 online resource : illustrations (some color)
Physical Medium polychrome
Description text file
Bibliography Includes bibliographical references.
Summary This book describes a new concept in analyzing circuits, which includes optoisolation elements. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual optoisolation circuits are innovative and can be broadly implemented in engineering applications. The dynamics of optoisolation circuits provides several ways to use them in a variety of applications covering wide areas. The presentation fills the gap of analytical methods for optoisolation circuits analysis, concrete examples, and geometric examples. The optoisolation circuits analysis is developed systematically, starting with basic optoisolation circuits differential equations and their bifurcations, followed by Fixed points analysis, limit cycles and their bifurcations. Optoisolation circuits can be characterized as Lorenz equations, chaos, iterated maps, period doubling and attractors. This book is aimed at electrical and electronic engineers, students and researchers in physics as well. A unique features of the book are its emphasis on practical and innovative engineering applications. These include optocouplers in a variety topological structures, passive components, conservative elements, dissipative elements, active devices, etc., In each chapter, the concept is developed from the basic assumptions up to the final engineering outcomes. The scientific background is explained at basic and advance levels and closely integrated with mathematical theory. Many examples are presented in this book and it is also ideal for an intermediate level courses at graduate level studies. It is also ideal for engineer who has not had formal instruction in nonlinear dynamics, but who now desires to fill the gap between innovative optoisolation circuits and advance mathematical analysis methods.
Contents 1. Optoisolation products descriptions. 1.1. Optocouplers general description. 1.2. Opto negative differential resistance (NDR). 1.3. Absolute negative differential resistance (NDR). 1.4. Optocoupler (LED, photo transistor) as a basic negative differential resistance (NDR) circuit. 1.5. Optocoupler (LED, photo transistor) NDR circuit mathematical analysis. 1.6. Controlling NDR characteristics by optocoupler (LED, phototransistor) parameters. 1.7. Optocoupler (LED, photo transistor) computer analysis. 1.8. Oscillations and regenerative amplification using opto negative differential resistance (NDR). 1.9. Radio FM generation -- Parameter variation method using opto NDR as compensation elements. 1.10. Multi channel bi directional digital optocoupler. 1.11. Exercises -- 2. Optoisolation one dimensional flow and bifurcation. 2.1. Optocoupler flow on the line. 2.2. Optocoupler fixed point and stability. 2.3. Optocoupler fixed point and stability analysis using Taylor expansion estimation. 2.4. Optocoupler saddle -- node bifurcation. 2.5. Optocoupler transcritical bifurcation. 2.6. Optocoupler pitchfork bifurcation. 2.7. Optocoupler imperfect bifurcations and catastrophes. 2.8. Optocoupler flow on the circle. 2.9. Optocoupler flow on the circle uniform oscillation. 2.10. Optocoupler flow on the circle non-uniform oscillation. 2.11. Exercises -- 3. Optoisolation negative differential resistance (NDR) circuits as a dynamical system. 3.1. OPTO NDR basic dynamical circuit (Case I). 3.2. OPTO NDR fixed points and stability (Case I). 3.3. OPTO NDR basic dynamical circuit (Case II). 3.4. OPTO NDR fixed points and stability (Case II). 3.5. OPTO NDR linear stability analysis. 3.6. OPTO NDR bifurcation. 3.7. OPTO NDR cascade structure. 3.8. Exercises -- 4. Optoisolation negative differential resistance (NDR) circuits in a topologic structures. 4.1. OPTO NDR flow on the line. 4.2. OPTO NDR fixed points and stability. 4.3. OPTO NDR circuit dynamic with oscillation source. 4.4. OPTO NDR circuit dynamic with inductor and output capacitor. 4.5. OPTO NDR circuit dynamic with serial capacitor. 4.6. Exercises -- 5. Photocoupled FET's structure negative differential resistance (NDR) circuits. 5.1. Photocoupled FET general description. 5.2. Combinational connection of photocoupled FET's -- negative differential resistance (NDR) circuit. 5.3. Photocoupled FET's circuit (NDR) flow on the line. 5.4. Photocoupled FET's circuit (NDR) one dimensional map discrete time. 5.5. Photocoupled FET's circuit (NDR) one dimensional R[symbol] map discrete time. 5.6. Photocoupled FET's circuit (NDR) one dimensional R[symbol] chaos and periodic windows. 5.7. Exercises.
6. Optoisolation's circuits two dimensional flow. 6.1. Optoisolation's circuits two dimensional flow linear/nonlinear systems analysis using Taylor expansion estimation. 6.2. Optoisolation's circuits two dimensional flow linear/nonlinear systems analysis using Taylor expansion estimation -- Fixed points, stability. 6.3. Optoisolation's circuits two dimensional flow linear/nonlinear systems (exponential terms). 6.4. Optoisolation's circuits two dimensional flow bifurcation. 6.5. Optoisolation's circuits two dimensional flow center. 6.6. Optoisolation' circuit two dimensional flow k2 = 0, V2 = 0, k1 = 0 or k1 <> 0. 6.7. Exercises -- 7. Optoisolation's circuits with time delay parameters. 7.1. Delayed optoisolation circuit general description. 7.2. Delayed OptoNDR circuit dynamic analysis. 7.3. OptoNDR circuit stability analysis under delayed variables in time. 7.4. OptoNDR circuit stability switching under parameters variations. 7.5. Delayed optoisolation system (higher order characteristic equation) dynamic analysis. 7.6. Delayed optoisolation system stability switching under parameters variations. 7.7. Exercises -- 8. Optoisolation's circuits time periodic delay differential equation (DDE). 8.1. Delayed optoisolation circuit with periodic source Mathieu equation. 8.2. Delayed optoisolation circuit implementation with periodic source. 8.3. Delayed OptoNDR circuit implementation with periodic source. 8.4. Delayed OptoNDR circuit implementation with periodic source stability analysis. 8.5. Delayed OptoNDR circuit characteristic equation with periodic source stability analysis. 8.6. Exercises -- 9. Optoisolation's circuits chaos characteristics. 9.1. Optoisolation Lorenz system. 9.2. Lorenzian optoisolation system properties. 9.3. Lorenzian optoisolation system chaos and attractors. 9.4. Optoisolation circuit Lorenz map and system parameters space. 9.5. Optoisolation system one dimensional map. 9.6. Optoisolation system one dimensional maps fixed points and logistic map. 9.7. Exercises -- 10. Optoisolation's bifurcation behaviors -- Investigation, comparison and conclusions.
Local Note eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - North America
Subject Electric circuits, Nonlinear.
Electric circuits, Nonlinear.
Optoelectronic devices.
Optoelectronic devices.
Genre/Form Electronic books.
ISBN 9789814317016 (electronic book)
9814317012 (electronic book)