Skip to content
You are not logged in |Login  
     
Limit search to available items
Record:   Prev Next
Resources
More Information
Bestseller
BestsellerE-book
Author Sloss, Andrew N.

Title ARM system developer's guide : designing and optimizing system software / Andrew N. Sloss, Dominic Symes, Chris Wright ; with a contribution by John Rayfield.

Publication Info. San Francisco, CA : Elsevier/ Morgan Kaufman, [2004]
©2004

Item Status

Description 1 online resource (xiii, 689 pages) : illustrations.
Physical Medium polychrome
Description text file
Series The Morgan Kaufmann Series in Computer Architecture and Design Ser.
Morgan Kaufmann Series in Computer Architecture and Design Ser.
Summary Over the last ten years, the ARM architecture has become one of the most pervasive architectures in the world, with more than 2 billion ARM-based processors embedded in products ranging from cell phones to automotive braking systems. A world-wide community of ARM developers in semiconductor and product design companies includes software developers, system designers and hardware engineers. To date no book has directly addressed their need to develop the system and software for an ARM-based system. This text fills that gap. This book provides a comprehensive description of the operation of the ARM core from a developers perspective with a clear emphasis on software. It demonstrates not only how to write efficient ARM software in C and assembly but also how to optimize code. Example code throughout the book can be integrated into commercial products or used as templates to enable quick creation of productive software. The book covers both the ARM and Thumb instruction sets, covers Intel's XScale Processors, outlines distinctions among the versions of the ARM architecture, demonstrates how to implement DSP algorithms, explains exception and interrupt handling, describes the cache technologies that surround the ARM cores as well as the most efficient memory management techniques. A final chapter looks forward to the future of the ARM architecture considering ARMv6, the latest change to the instruction set, which has been designed to improve the DSP and media processing capabilities of the architecture. * No other book describes the ARM core from a system and software perspective. * Author team combines extensive ARM software engineering experience with an in-depth knowledge of ARM developer needs. * Practical, executable code is fully explained in the book and available on the publisher's Website. * Includes a simple embedded operating system.
Contents Table of Contents: -- 1. ARM Embedded Systems -- 1.1 The RISC Design Philosophy -- 1.2 The ARM Design Philosophy -- 1.3 Embedded System Hardware -- 1.4 Embedded System Software -- 1.5 Summary -- 2 ARM Processor Fundamentals -- 2.1 Registers -- 2.2 Current Program Status Register -- 2.3 Pipeline -- 2.4 Exceptions, Interrupts, and the Vector Table -- 2.5 Core Extensions -- 2.6 Architecture Revisions -- 2.7 ARM Processor Families -- 2.8 Summary -- 3 Introduction to the ARM Instruction Set -- 3.1 Data Processing Instructions -- 3.2 Branch Instructions -- 3.3 Load-Store Instructions -- 3.4 Software Interrupt Instruction -- 3.5 Program Status Register Instructions -- 3.6 Loading Constants -- 3.7 ARMv5E Extensions -- 3.8 Conditional Execution -- 3.9 Summary -- 4 Introduction to the Thumb Instruction Set -- 4.1 Thumb Register Usage -- 4.2 ARM-Thumb Interworking -- 4.3 Other Branch Instructions -- 4.4 Data Processing Instructions -- 4.5 Single-Register Load-Store Instructions -- 4.6 Multiple-Register Load-Store Instructions -- 4.7 Stack Instructions -- 4.8 Software Interrupt Instruction -- 4.9 Summary -- 5 Efficient C Programming -- 5.1 Overview of C Compilers and Optimization -- 5.2 Basic C Data Types -- 5.3 C Looping Structures -- 5.4 Register Allocation -- 5.5 Function Calls -- 5.6 Pointer Aliasing -- 5.7 Structure Arrangement -- 5.8 Bit-fields -- 5.9 Unaligned Data and Endianness -- 5.10 Division -- 5.11 Floating Point -- 5.12 Inline Functions and Inline Assembly -- 5.13 Portability Issues -- 5.14 Summary -- 6 Writing and Optimizing ARM Assembly Code -- 6.1 Writing Assembly Code -- 6.2 Profiling and Cycle Counting -- 6.3 Instruction Scheduling -- 6.4 Register Allocation -- 6.5 Conditional Execution -- 6.6 Looping Constructs -- 6.7 Bit Manipulation -- 6.8 Efficient Switches -- 6.9 Handling Unaligned Data -- 6.10 Summary -- 7 Optimized Primitives -- 7.1 Double-Precision Integer Multiplication -- 7.2 Integer Normalization and Count Leading Zeros -- 7.3 Division -- 7.4 Square Roots -- 7.5 Transcendental Functions: log, exp, sin, cos -- 7.6 Endian Reversal and Bit Operations -- 7.7 Saturated and Rounded Arithmetic -- 7.8 Random Number Generation -- 7.9 Summary -- 8 Digital Signal Processing -- 8.1 Representing a Digital Signal -- 8.2 Introduction to DSP on the ARM -- 8.3 FIR filters -- 8.4 IIR Filters -- 8.5 The Discrete Fourier Transform -- 8.6 Summary -- 9 Exception and Interruput Handling -- 9.1 Exception Handling -- 9.2 Interrupts -- 9.3 Interrupt Handling Schemes -- 9.4 Summary -- 10 Firmware -- 10.1 Firmware and Bootloader -- 10.2 Example: Sandstone -- 10.3 Summary -- 11 Embedded Operating Systems -- 11.1 Fundamental Components -- 11.2 Example: Simple Little Operating System -- 11.3 Summary -- 12 Caches -- 12.1 The Memory Hierarchy and Cache Memory -- 12.2 Cache Architecture -- 12.3 Cache Policy -- 12.4 Coprocessor 15 and Caches -- 12.5 Flushing and Cleaning Cache Memory -- 12.6 Cache Lockdown -- 12.7 Caches and Software Performance -- 12.8 Summary -- 13 Memory Protection Units -- 13.1 Protected Regions -- 13.2 Initializing the MPU, Caches, and Write Buffer -- 13.3 Demonstration of an MPU system -- 13.4 Summary -- 14 Memory Management Units -- 14.1 Moving from an MPU to an MMU -- 14.2 How Virtual Memory Works -- 14.3 Details of the ARM MMU -- 14.4 Page Tables -- 14.5 The Translation Lookaside Buffer -- 14.6 Domains and Memory Access Permission -- 14.7 The Caches and Write Buffer -- 14.8 Coprocessor 15 and MMU Configuration -- 14.9 The Fast Context Switch Extension -- 14.10 Demonstration: A Small Virtual Memory System -- 14.11 The Demonstration as mmuSLOS -- 14.12 Summary -- 15 The Future of the Architecture -- by John Rayfield -- 15.1 Advanced DSP and SIMD Support in ARMv6 -- 15.2 System and Multiprocessor Support Additions to ARMv6 -- 15.3 ARMv6 Implementations -- 15.4 Future Technologies beyond ARMv6 -- 15.5 Conclusions -- Appendix A: ARM and Thumb Assembler Instructions -- Appendix: B ARM and Thumb Instruction Encodings -- Appendix C: Processors and Architecture -- Appendix D: Instruction Cycle Timings -- Appendix E: Suggested Reading -- Index.
Bibliography Includes bibliographical references (pages 667-668) and index.
Local Note eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - North America
Subject Computer software -- Development.
Computer software -- Development.
RISC microprocessors.
RISC microprocessors.
Computer architecture.
Computer architecture.
Genre/Form Electronic books.
Added Author Symes, Dominic.
Wright, Chris, 1953-
In: T Referex Electronics and Electrical Engineering
Other Form: Print version: Sloss, Andrew N. ARM system developer's guide. San Francisco, CA : Elsevier/ Morgan Kaufman, ©2004 1558608745 9781558608740 (DLC) 2004040366 (OCoLC)54034975
ISBN 9780080490496 (electronic book)
0080490492 (electronic book)
9781558608740
1558608745