Skip to content
You are not logged in |Login  
     
Record:   Prev Next
Resources
More Information
Bestseller
BestsellerE-book

Title Microfluidics for medical applications / edited by Albert Berg and Loes Segerink.

Publication Info. Cambridge, UK : Royal Society of Chemistry, [2015]

Item Status

Description 1 online resource (xvii, 303 pages) : illustrations.
text file
Series RSC nanoscience & nanotechnology, 1757-7136 ; no. 36
RSC nanoscience & nanotechnology ; 36.
Bibliography Includes bibliographical references and index.
Contents Machine generated contents note: ch. 1 Microtechnologies in the Fabrication of Fibers for Tissue Engineering / Ali Khademhosseini -- 1.1. Introduction -- 1.2. Fiber Formation Techniques -- 1.2.1. Co-axial Flow Systems -- 1.3. Wetspinning -- 1.4. Meltspinning (Extrusion) -- 1.5. Electrospinning -- 1.6. Conclusions -- Acknowledgements -- References -- ch. 2 Kidney on a Chip / Kahp-Yang Suh -- 2.1. Introduction -- 2.2. Kidney Structure and Function -- 2.3. Mimicking Kidney Environment -- 2.3.1. Extracellular Matrix -- 2.3.2. Mechanical Stimulation -- 2.3.3. Various Kidney Cells -- 2.3.4. Extracellular Environment -- 2.4. Kidney on a Chip -- 2.4.1. Microfluidic Approach for Kidney on a Chip -- 2.4.2. Fabrication of Kidney on a Chip -- 2.4.3. Various Kidney Chips -- 2.5. Future Opportunities and Challenges -- References -- ch. 3 Blood-brain Barrier (BBB): An Overview of the Research of the Blood-brain Barrier Using Microfluidic Devices / Albert van den Berg
3.1. Introduction -- 3.2. Blood-brain Barrier -- 3.2.1. Neurovascular Unit -- 3.2.2. Transport -- 3.2.3. Multidrug Resistance -- 3.2.4. Neurodegenerative Diseases -- Loss of BBB Function -- 3.3. Modeling the BBB in Vitro -- 3.3.1. Microfluidic in Vitro Models of the BBB: the "BBB-on-Chip" -- 3.3.2. Cellular Engineering -- 3.3.3. Biochemical Engineering -- 3.3.4. Biophysical Engineering -- 3.4. Measurement Techniques -- 3.4.1. Transendothelial Electrical Resistance -- 3.4.2. Permeability -- 3.4.3. Fluorescence Microscopy -- 3.5. Conclusion and Future Prospects -- Acknowledgements -- References -- ch. 4 Use of Microfluidic-based Neuronal Cell Cultures to Study Alzheimer's Disease / Philippe Renaud -- 4.1. Alzheimer's Disease -- Increased Mortality Rates and Still Incurable -- 4.2. Unknowns of Alzheimer's Disease -- 4.2.1. Molecular Key Players of AD -- 4.2.2. From Molecules to Neuronal Networks -- 4.3. Why Microsystems May Be a Key in Understanding the Propagation of AD -- 4.3.1. Requirements for in Vitro Studies on AD Progression
4.3.2. Establishing Ordered Neuronal Cultures with Microfluidics -- 4.4. Micro-devices-based in Vitro Alzheimer Models -- 4.4.1. First Microtechnology-based Experimental Models -- 4.4.2. Requirements of Future Micro-device-based Studies -- 4.5. Questions that May Be Addressed by Micro-controlled Cultures -- References -- ch. 5 Microbubbles for Medical Applications / Michel Versluis -- 5.1. Introduction -- 5.1.1. Microbubbles for Imaging -- 5.1.2. Microbubbles for Therapy -- 5.1.3. Microbubbles for Cleaning -- 5.2. Microbubble Basics -- 5.2.1. Microbubble Dynamics -- 5.3. Microbubble Stability -- 5.4. Microbubble Formation -- 5.5. Microbubble Modeling and Characterization -- 5.5.1. Optical Characterization -- 5.5.2. Sorting Techniques -- 5.5.3. Acoustical Characterization -- 5.6. Conclusions -- Acknowledgements -- References -- ch. 6 Magnetic Particle Actuation in Stationary Microfluidics for Integrated Lab-on-Chip Biosensors / Menno W. J. Prins -- 6.1. Introduction -- 6.2. Capture of Analyte Using Magnetic Particles
6.2.1. Analyte Capture Process -- 6.2.2. Analyte Capture Using Magnetic Particles in a Static Fluid -- 6.3. Analyte Detection -- 6.3.1. Magnetic Particles as Carriers -- 6.3.2. Agglutination Assay with Magnetic Particles -- 6.3.3. Surface-binding Assay with Magnetic Particles as Labels -- 6.3.4. Magnetic Stringency -- 6.4. Integration of Magnetic Actuation Processes -- 6.5. Conclusions -- Acknowledgements -- References -- ch. 7 Microfluidics for Assisted Reproductive Technologies / Shuichi Takayama -- 7.1. Introduction -- 7.2. Gamete Manipulations -- 7.2.1. Male Gamete Sorting -- 7.2.2. Female Gamete Quality Assessment -- 7.3. In Vitro Fertilization -- 7.4. Cryopreservation -- 7.5. Embryo Culture -- 7.6. Embryo Analysis -- 7.7. Conclusion -- References -- ch. 8 Microfluidic Diagnostics for Low-resource Settings: Improving Global Health without a Power Cord / Paul Yager -- 8.1. Introduction: Need for Diagnostics in Low-resource Settings -- 8.1.1. Importance of Diagnostic Testing -- 8.1.2. Limitations in Low-resource Settings
8.1.3. Scope of Chapter -- 8.2. Types of Diagnostic Testing Needed in Low-resource Settings -- 8.2.1. Diagnosing Disease -- 8.2.2. Monitoring Disease -- 8.2.3. Counterfeit Drug Testing -- 8.2.4. Environmental Testing -- 8.3. Overview of Microfluidic Diagnostics for Use at the Point of Care -- 8.3.1. Channel-based Microfluidics -- 8.3.2. Paper-based Microfluidics -- 8.4. Enabling All Aspects of Diagnostic Testing in Low-resource Settings: Examples of and Opportunities for Microfluidics (Channel-based and Paper-based) -- 8.4.1. Transportation and Storage of Devices in Low-resource Settings -- 8.4.2. Specimen Collection -- 8.4.3. Sample Preparation -- 8.4.4. Running the Assay -- 8.4.5. Signal Read-out -- 8.4.6. Data Integration into Health Systems -- 8.4.7. Disposal -- 8.5. Conclusions -- References -- ch. 9 Isolation and Characterization of Circulating Tumor Cells / Leon W. M. M. Terstappen -- 9.1. Introduction -- 9.2. CTC Definition in CellSearch System -- 9.3. Clinical Relevance of CTCs -- 9.4. Identification of Treatment Targets on CTCs
9.5. Technologies for CTC Enumeration -- 9.6. Isolation and Identification of CTCs in Microfluidic Devices -- 9.6.1. Microfluidic Devices for CTC Isolation Based on Physical Properties -- 9.6.2. Microfluidic Devices to Isolate CTCs Based on Immunological Properties -- 9.6.3. Microfluidic Devices to Isolate CTCs Based on Physical as well as Immunological Properties -- 9.6.4. Characterization of CTCs in Microfluidic Devices -- 9.7. Summary and Outlook -- References -- ch. 10 Microfluidic Impedance Cytometry for Blood Cell Analysis / Daniel Spencer -- 10.1. Introduction -- 10.2. Full Blood Count -- 10.2.1. Clinical Diagnosis and the Full Blood Count -- 10.2.2. Commercial FBC Devices -- 10.3. Microfluidic Impedance Cytometry (MIC) -- 10.3.1. Measurement Principle -- 10.3.2. Behavior of Cells in AC fields -- 10.3.3. Sizing Particles -- 10.3.4. Cell Membrane Capacitance Measurements -- 10.3.5. Microfluidic FBC Chip -- 10.3.6. Accuracy and Resolution -- 10.3.7. Antibody Detection -- 10.4. Further Applications of MIC
10.4.1. Cell Counting and Viability -- 10.4.2. Parasitized Cells -- 10.4.3. Tumor Cells and Stem Cell Morphology -- 10.4.4. High-frequency Measurements -- 10.5. Future Challenges -- References -- ch. 11 Routine Clinical Laboratory Diagnostics Using Point of Care or Lab on a Chip Technology / Istvan Vermes -- 11.1. Introduction -- 11.2. Point-of-care Testing -- 11.2.1. Categorization of POCT Devices -- 11.2.2. Role of POCT in Laboratory Medicine -- 11.3. Glucometers -- 11.3.1. WHO and ADA Criteria of Diabetes -- 11.3.2. Plasma Glucose or Blood Glucose -- 11.3.3. Glucometers in Medical Practice -- 11.3.4. Glucometers in Gestational Diabetes -- 11.3.5. Continuous Glucose Monitoring -- 11.4. i-STAT: a Multi-parameter Unit-use POCT Instrument -- 11.4.1. Clinical Chemistry -- 11.4.2. Cardiac Markers -- 11.4.3. Hematology -- 11.4.4. Clinical Use and Performance -- 11.5. Conclusions -- References -- ch. 12 Medimate Minilab, a Microchip Capillary Electrophoresis Self-test Platform / Jan C. T. Eijkel -- 12.1. Introduction
12.2. Microfluidic Capillary Electrophoresis as a Self-test Platform -- 12.2.1. Conducting a Measurement -- 12.2.2. Measurement Process -- 12.2.3. From Research Technology to Self-test Platform -- 12.3. A Lithium Self-test for Patients with Manic Depressive Illness -- 12.4. Validation Method -- 12.4.1. Applied Guidelines -- 12.4.2. Acceptance Criteria -- 12.4.3. Sample Availability, Preparation, and other Considerations -- 12.5. Validation Results -- 12.5.1. Reproducibility -- 12.5.2. Linearity -- 12.5.3. Method Comparison -- 12.5.4. Home Test -- 12.5.5. Other Study Results -- 12.5.6. Final Evaluation -- 12.6. Platform Potential -- 12.6.1. Current Platform Capabilities -- 12.6.2. Future Possibilities and Limitations -- 12.7. Conclusions -- Acknowledgements -- References.
Local Note eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - North America
Subject Microfluidics.
Microfluidics.
Medical technology.
Medical technology.
Microbubbles.
Microfluidics -- methods.
Genre/Form Electronic books.
Added Author Berg, A. van den (Albert), editor.
Segerink, Loes, editor.
Other Form: Print version: Microfluidics for medical applications. Cambridge, UK : Royal Society of Chemistry, [2015] 9781849736374 (DLC) 2015451353 (OCoLC)903630082
ISBN 9781849737593 (electronic book)
1849737592 (electronic book)
9781849736374
1849736375